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Abstract—As new technologies are introduced into rail opera-
tions, models are needed to represent the task load of operators
to identify periods of extreme workload that could be mitigated
through technological interventions. To this end, a computational
model is described to quantitatively simulate freight rail operator
workload to understand the impacts of inserting intelligent au-
tomation on different crew configurations. A detailed task analysis
served as the basis for identifying tasks performed during transit.
Utilizing task characteristics and operating conditions as inputs, a
discrete event simulation was designed to predict human operator
workload. Results show that during heavy-traffic conditions, the
presence of automation can impact the locomotive engineer perfor-
mance more than the presence of a freight conductor in a short-haul
freight rail setting. However, under typical conditions, assistance
may not be as beneficial for human operator performance.

Index Terms—Automation, discrete event simulation (DES),
freight rail operations, human performance modeling, workload.

I. INTRODUCTION

THE U.S. rail transportation industry has a long history of
introducing new technologies to meet evolving demands.

Innovations such as advanced signaling technology and auto-
mated methods for tracking and distributing cars on complex
networks of tracks have helped to improve safety by deterring
many accidents. They have also facilitated smaller crew sizes
and increased workload on crews [1].

Today, human factors are the leading causes of train accidents
in the United States [2]. Despite this fact, rules proposed by the
Federal Railroad Administration (FRA) in 2016 suggest that
safety is significantly improved when the primary operator has
another human in the locomotive [3]. Presumably, safety will
also be positively impacted when the Congressional mandate
set in 2008 for all major railroads to integrate automation in the
form of positive train control (PTC) is fully enforced [4].

Simultaneously, companies like GE Transportation have been
selling cruise control systems to become a standard for en-
ergy management, appealing to the U.S. Environmental Pro-
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tection Agency [5]. PTC essentially acts as a backup monitor
of unsafe track conditions and initiator of emergency braking,
which is needed since humans are poor at monitoring tasks
[6]. Combining such systems could provide a form of autopi-
lot like those of self-driving cars. However, previous research
in human–automation interaction has demonstrated that addi-
tional automation does not necessarily guarantee increased sys-
tem effectiveness or safety [7], [8]. Often, automating a task
within a larger system modifies the task by transferring the op-
erator’s workload from one physical or cognitive resource to
another, thereby changing the task rather than eliminating one
[9]. Poorly designed automation can contribute to errors and re-
duce system effectiveness due to implementations that increase
cognitive workload.

Workload is of interest in rail operations as the job of hu-
man operators in transportation increasingly involves changing
demands in cognition and decision making as manual labor is
more often allocated to machines [10]. Cognitive workload is
the “level of attentional resources required to meet both objec-
tive and subjective performance criteria, which may be mediated
by task demands, external support, and past experience” [11].
While the importance of workload is clear, numerous challenges
remain in objectively measuring workload [12].

To this end, this research presents a task workload mod-
eling approach commonly found in aviation settings, applied
to freight rail operations. Developed using objective task time
data collected during observations of train crews and analytical
data collected from interviews with 18 subject-matter experts
(SMEs), the Simulator of Human Operator Workload (SHOW)
represents locomotive crew workload under numerous operat-
ing conditions and task loads. SHOW extends previous efforts
by developing a computational model to better understand how
workload is affected by the introduction of automated technolo-
gies, as well as how these advanced technologies could or should
inform crew configurations. The ultimate objective of SHOW is
to provide various stakeholders with a tool to investigate poten-
tial staffing and technology architectures in conceptual design
phases.

II. LITERATURE REVIEW

With increasing automation in the freight rail domain, it is im-
portant to understand how operator workload may be affected
by introducing new technologies. Previous work in the rail do-
main includes the development of a hierarchical task network
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to abstractly represent workload [13]. Researchers have synthe-
sized cognitive task analyses of engineers [14], conductors [15],
and dispatchers [16]–[18] and summarized the results in con-
cept maps. They then verified the accuracy of the maps through
interviews with SMEs and used the concept maps to develop
an abstraction hierarchy [19], representing specific tasks and
generalized functions executed by engineers and conductors for
safe and effective rail transport.

This hierarchical task network provided valuable insights into
the causes of operator workload. However, given the insertion
of new technologies into rail operations, an additional model-
ing method is needed that allows for concept evaluation across
different operating conditions, especially as such changes could
significantly impact operator workload and system performance.
Mathematical models represent one such analytical approach
that can calculate human operator workload across different
conditions and time scales [20].

Research in human supervisory control [21], human–machine
interaction [22], and air traffic control [23] has suggested time
on task as a reliable estimation of workload. Time on task is
defined as the duration an operator’s attentional resources are
actively used to meet the functional requirements. Wierwille
and Eggemeier [12] suggest that time-on-task estimations can
reveal areas of heightened workload that may be missed in other
forms of assessment. Cummings and Guerlain [24] and Donmez
et al. [25] extended the use of task time data by incorporating a
utilization metric as a means of objectively measuring high and
low workload. This utilization metric is defined as percentage
of time an operator spends on task performance out of total
operation time. Maximum utilization is 100%, at which point
there no additional capacity available for a human operator to
allocate toward accomplishing tasks.

When utilization levels are too high, operators may be too
busy to accumulate the information required to maintain situ-
ation awareness (SA). Similarly, when operators are underuti-
lized, they could overlook information from the environment
due to low engagement, also leading to poor SA. Levels of
utilization below 30% have been associated with poor perfor-
mance due to boredom and distraction, while a 70% utilization
threshold has been used to indicate the upper bound of optimal
workload [26]–[29]. For over a century, researchers have used
the Yerkes–Dodson inverted-U theory to conceptualize the rela-
tionship of workload levels to performance where performance
declines during extreme workload periods of under- or overuti-
lization [25]. The goal for transportation systems in general, and
rail operations specifically, is to optimally man crews such that
each operator is moderately utilized.

Because of the temporal nature of shift work experienced
by rail crews, we chose to develop a workload model through
discrete event simulation (DES). DES has been used for years
in modeling manufacturing [30], health care services [31], and
military operations [32]. It allows designers to realize areas that
cause undesired delays in their systems. However, in railway
operations, DES has only been used in some studies to model the
utilization of infrastructure, without explicit consideration for
human factors [33]–[35]. The rail industry needs an approach
to modeling workload of train crew, with a special emphasis
on the role of supporting humans with new technologies. With

TABLE I
TYPES OF FREIGHT RAIL CREW TASKS

pending changes in operational practices, including the insertion
of various forms of automation, stakeholders need a tool for
rapid exploration of various crew workload and tasking models.
Such a tool could be used to investigate questions like, “How is
the locomotive engineer’s performance affected by automation,
and how might this change without a freight conductor?”

This paper describes the design, validation, and analysis of a
functional DES of freight rail operations to model crew work-
load called SHOW. Using DES is advantageous as it allows
for a time-based representation of human processes at a task
level. Therefore, we began this modeling effort by collecting
time-on-task data of real freight rail operations.

III. EMPIRICAL DATA COLLECTION

Cognitive task analyses were conducted through direct obser-
vation, and structured and unstructured interviews with SMEs
aided in identification and categorization of in-cab crew tasks.
Using present-day operations as a baseline, a typical in-cab crew
can include a team of two or single-person operations, with the
engineer as the primary operator. Based on a framework pro-
posed by Subrahmaniyan et al. [13] that generalized functions
to represent work performed by the engineer and the conductor,
a core set of tasks were defined, as shown in Table I.

The work of the engineer is more than just maneuvering the
locomotive control system. It also requires paying attention to
the environment, in-cab displays, and radio communications
with dispatch to maintain SA and plan several miles in advance.
On the other hand, the work of the conductor is to supervise
the train conditions on the ground at terminal points and remain
attentive to the engineer while the train is in motion in the
case of an emergency. When the conductor engages in planning,
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Fig. 1. Percentage of engineer utilization in a one-person crew in 10-min intervals over a 5-h shift during the typical condition.

monitoring inside, or exception handling tasks, they function as
a backup to the engineer since tasks of those type are primarily
allocated to the engineer who has been trained to handle them
as a single operator.

We directly observed locomotive engineers for two 2.5-h ride-
alongs at a private Canadian regional railroad that operates with
single-person crews. During the observations, our team noted
a description and time for each task observed (e.g., blowing
horn, 00:15:11–00:15:16). In total, approximately 50 tasks were
logged per hour.

The ride-alongs were followed by structured interviews with
our first set of seven SMEs: five in the railroad’s operations,
training, dispatch, and regulations along with two labor union
representatives from a Canadian Rail United Transportation
Union chapter. Experience across all personnel ranged from
3 to 20 years. Video recordings from the ride-alongs were re-
viewed to identify times spent on each observable and partially
observable task performed throughout different phases of the
shift (e.g., communicating, paperwork).

Interviews following observations provided clarification of
tasks observed during normal railroad operations. At the Am-
trak Training Center in Wilmington, Delaware, additional struc-
tured interviews were conducted with a second set of SMEs,
four trained operators since their operations allow engineers
to operate alone in the locomotive cab during short-haul shifts
[36]. We observed engineer task performance in three physical
locomotive cab simulators and one trainee class to supplement
our dataset.

One important result from these observations was the eluci-
dation of different phases of operation. A phase is defined by
a change in operational behavior, which drives either different
tasks for an operator, or substantially different frequencies of

tasks. From the cognitive task analyses and observations, we
identified three phases for freight rail operators: startup, full
motion, and yard.

The startup phase includes the first 30 min of an engineer’s
shift in the train. Startup includes tasks supporting regulatory
requirements, such as communicating with dispatch and testing
the emergency braking system so, just as in the real world, there
is a chance that a task comes in last minute that takes longer
than expected to complete.

During full motion the engineer drives the locomotive to its
destination, and this typically is the longest phase of the trip.
The final phase, the yard phase, is the source of the highest rates
of accidents [37].

IV. DESCRIPTIVE MODEL DEVELOPMENT

The results of these cognitive task analyses of the engineer
and conductor functions were used to construct a descriptive
temporally based task model of crew responsibilities, includ-
ing frequencies and durations. For this case study, we gathered
estimates from an average of the observed times per task type
under typical conditions and the “most likely” times reported by
SMEs. For heavy traffic, we used the upper 3-quantile of times,
including the “pessimistic” times reported by SMEs. We created
a table of estimated time the locomotive engineer spent on each
type of task for each 10-min interval. These were aggregated to
represent 5-h short-haul shifts.

The results from this descriptive model were validated by
SMEs for four defined scenarios that described workload of an
engineer working alone or with a conductor during typical or
high traffic conditions under both crew complements. One such
scenario is presented in Fig. 1.
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Fig. 2. Diagram of SHOW development and validation.

In Fig. 1, the scenario of an engineer operating alone under
typical conditions is presented. Task times are described over
10- min time ranges. The three markers labeled Full Motion
beginning in the first 30 min, Traffic beginning at minute 200,
and Yard approaching the final 30 min represent changes in
tasks and frequencies of tasks. For example, the Traffic event
represents the train approaching other vehicles on the track.

To better associate the nine task types in Table I with mis-
sion goals for freight rail that would ultimately be affected by
operating conditions, we simplified the structure of engineer
tasking to six. We organized Planning Ahead and Generating
Expectations, Signal Response Management, Temporary Speed
Restriction Management, and Maintenance of Way Interactions
under the higher level task of Motion Planning. In Motion Plan-
ning, the engineer performs many lower level tasks to meet the
higher level goal of moving the train forward toward its des-
tination efficiently. Motion Planning is unique to the engineer
and cannot be directly reallocated to the conductor. The model
shows that almost half, 46%, of the engineer’s workload can be
attributed to motion planning. Motion planning involves manip-
ulating the locomotive control system and preparing in advance
for mechanisms required to move the train towards a destination.
Monitoring the displays within the cab makes monitoring inside
an important secondary task that accounts for 22% of their total
time on task during the 5-h shift.

In this scenario that represents typical operations over a 5-h
period, typical of short-haul lines, the engineer is responsible
for fulfilling all onboard tasks, and Fig. 1 shows that utiliza-
tion ranges between 18% and 78%, with an average of 37%
utilization. In this scenario, the engineer spends 20 min above
70% and 80 min below the 30% utilization threshold. With de-
scriptive results, we generated data distributions and developed
a predictive model in an iterative design and validation process
depicted in Fig. 2 and further explained in the next section on
SHOW.

V. SIMULATOR OF HUMAN OPERATOR WORKLOAD

The SHOW models human operators and assistive agents as
serial processors of complex tasks and records the basic units

of key performance metrics through the time it takes them to
accomplish these tasks. The simulation begins when the first
task arrives in the system (based on a stochastic arrival distri-
bution) and then is assigned to an operator’s queue based on
the operator’s functional capability to handle that type of task.
Operators include humans (i.e., conductor and/or engineer) and
automated agents (i.e., PTC and/or cruise control technologies).
Tasks can queue, awaiting operator availability for servicing. In
the process of service, the task may be interrupted by another
task of higher priority [14] and thus returned to wait in queue
due to preemptive priority scheduling, which models multitask-
ing with rapid serial switching. Finally, the task exits when it is
completely serviced or is expired.

The process of a task flowing through the freight rail simula-
tion is illustrated in Fig. 3. At any point in this process, the task
may expire before service, at which point it departs the system.
A task may also drop if the phase changes or the trip ends while
it is waiting in a queue. For example, at 30 min, no additional
startup tasks can enter the queue and engineers must complete
any tasks already in the queue before they can begin full motion
phase.

The simulation allows tasks to have different arrival rates and
expiration times by phase as appropriate. This is intended to
mimic real-world operations, where types of tasks may differ
between phases. For example, a maintenance of way interac-
tion task would only arrive in the latter two phases of a trip.
These task types were consistently categorized for both engi-
neers and conductors. Tasks within each type of course vary and
are represented by the random distribution of times.

The sources of system stochasticity are task inter-arrival and
operator service times which are random observations gen-
erated from probability distribution functions. Each replica-
tion in a simulation run pulls from the random distributions,
which simulates the variability of event times. Operator ser-
vice times on tasks are simulated to increase by 1% each hour
to model the impact of fatigue as demonstrated in the linear
function from Hursh et al. [38] that found reciprocal cogni-
tive performance capacity decays over consecutive hours of
wakefulness.

More simulated trips provide a more robust set of results
although the simulation’s processing time will increase [39].
SHOW tracks several different statistics, as shown in Table II,
computed for each human operator across replications.

Utilization, the principal measure, is used as a proxy for
workload. The simulation records the utilization for each op-
erator throughout the shift and results are reported in 10-min
intervals. This output can be used to validate the simulation
model output data when compared to the empirical data struc-
ture. The expired/completed tasks and average wait time outputs
provide additional statistics to infer system performance metrics
of effectiveness and efficiency.

SHOW is an online tool (apps.hal.pratt.duke.edu/show) that
can be used by any interested party to model any rail platform,
with the assumption that the modeler knows the tasks and at least
basic estimates of time of task performance. The platform allows
a person to input default tasks, times, and allocations to represent
their own operational settings (see Fig. 4). We generated default
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Fig. 3. SHOW process flow from task arrival to departure from freight rail operator system.

TABLE II
SIMULATION OUTPUT STATISTICS

Fig. 4. Screenshot of SHOW user interface.

probability distributions from the whole set of original task
arrival and service time estimates (see Table III).

VI. SIMULATION VALIDATION

The validation process establishes the model as a reasonable
reflection of the real system it attempts to simulate [40]. First,
the stand-alone simulation software SHOW, developed in C++,
was verified with Rockwell Automation’s off-the-shelf Arena
version 14.7 package. Then a three-step validation process for
our given short-haul freight rail case study was followed:

1) statistical comparison with descriptive model for external
results validation;

2) SME review for face validation;
3) sensitivity analysis for internal validation.
To validate the output from the overall simulation model, a

Kolmogorov–Smirnov statistical goodness-of-fit test was per-
formed to determine if its data closely compared to that of the
actual system described. The test failed to reject the null hy-
pothesis (α = .05) that the samples from the descriptive and
predictive models were drawn from populations with identical
distributions during the full-motion phase of the shift D = .2917
(< Dα ), p = .216.

The second step involved gathering qualitative feedback
from SMEs with experience in freight rail operations, which
were seven freight rail original equipment manufacturers, re-
searchers, and actual locomotive operators, both current and
retired. The SME review qualitatively supported the model’s
results, including that conductors experienced overall lower
workload than engineers. SMEs also attested to operators ex-
periencing heightened workload during the final phases of
shifts.

In general, those with careers directly involving freight rail
operations found the results of both locomotive engineer and
freight conductor to be like their own experiences. However,
some researchers with experience studying workload in experi-
mental controlled labs of physical cab simulators were surprised
that utilization levels were reported to be lower than they imag-
ined. So, the SMEs encouraged that we share the model with
new stakeholders to expand our dataset and support SHOW’s
applicability to more freight rail operations since SHOW has
the flexibility to computationally simulate over 2360 trillion
settings of shift time, traffic level, and human- and automation-
assistance that are too time-intensive and expensive to test in
physical simulators with human volunteers.

Finally, a sensitivity analysis was performed to discover
which model factors may significantly impact key performance
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TABLE III
DEFAULT TASK ARRIVAL AND SERVICE TIME DISTRIBUTIONS

indicators (KPIs). The goal of the analysis was to investigate
how levels of variation in parameters impacted the deviation of
average utilization, wait time, throughput rate, and expiration
rate output measurements from the baseline results.

Our analysis revealed that variations in inter-arrival time sig-
nificantly changed mean results for utilization and throughput
rate. Variations in service time significantly changed mean re-
sults for utilization. And only extreme variations in traffic pa-
rameters significantly changed mean utilization and throughput
rate. In contrast, no variations within +/–20% in the fatigue pa-
rameter significantly changed any KPIs. Overall, our three-step

TABLE IV
DESIGN OF EXPERIMENTS

validation process built confidence in the model’s real-world
usefulness [41].

VII. SIMULATION ANALYSIS

To demonstrate the utility of SHOW, we used the short-haul
freight rail validated model in Fig. 1 to conduct a comparative
analysis of operator workload for eight concepts of operations
system reconfigurations. Our objective was to identify in the
case of one engineer operating a locomotive, which combi-
nations of human and automated assistants could yield better
performance for the system.

Four levels of assistance and two types of conditions were
defined (see Table IV). With no assistance, the engineer is re-
sponsible for all tasks alone. Human assistance refers to an
onboard freight conductor who can off-load signal response
management, monitoring inside, and planning tasks from the
engineer. We defined automated assistance as integration of PTC
and cruise control [42] technologies. Under the automated as-
sistance concept, PTC could handle emergency braking, signal
response, and monitoring inside tasks, while cruise control could
handle planning ahead and generating expectations tasks with
negligible service times. The all assistance category means that
the engineer was supported both by the conductor and automa-
tion. For any shared tasks represented in SHOW, the engineer
was the primary operator but if the engineer was occupied with
a task and a new task arrived, the task was routed to the con-
ductor’s queue, and then to automation’s queue if the conductor
was unavailable.

Typical conditions represent normal operations as observed
and validated. Heavy-traffic conditions represent a worst day
an operator may have with respect to traffic events, leading to
overall high task load, defined as 3.5 times the typical task ar-
rival rates and validated by the SMEs. A penalty function (1)
was defined to identify how the locomotive engineer’s perfor-
mance may be influenced by levels of human and automation
assistance during typical and heavy-traffic conditions. Donmez
et al. [25] found that extreme workload yielded inefficiencies
in operator attention and degraded human supervisory control
system performance. The thresholds for potential decrements in
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Fig. 5. Penalty function of operator utilization.

performance (penalties) are marked at 30% and 70% utilization
based on results from previous experiments [26]–[29]. At those
points, a penalty value (0,1] was computed along a slope of –1
for low workload and +1 for high workload.

For each 10-min interval recorded in the simulation, the fol-
lowing algorithm generates a penalty value according to the
penalty function we define as follows:

If Utilization < 30%

Penalty = 1 − 3.33 ∗ Utilization

Else if Utilization > 70%

Penalty = 3.33 ∗ Utilization − 2.33

Else,Penalty = 0. (1)

This penalty function (see Fig. 5) approximates the Yerkes–
Dodson theory, which establishes performance as an inverted
parabolic function of workload. In this inverse and linear ap-
proximation, penalty is a function of utilization (proxy for work-
load). The cost function assumed an equal linear penalty for low
and high workload, as previous research [25] demonstrated that
this approach effectively matched observed conditions.

We applied this function across 1000 replications to analyze
the distribution of the results for each of the eight experiments
presented in Table IV. A one-way analysis of variance was
used to determine whether the penalty values from extremely
high workload under high traffic conditions differed when the
locomotive engineer was alone, supported by all assistance,
supported by automation only, or supported by human only (see
Fig. 6). Assumptions of normality and homogeneity of error
variance were met.

The analysis showed significant differences among the four
groups of 1000 data points, F(3,3996) = 49.9, p < .001. An
engineer under high workload assisted with a combination of
automation and human support exhibited the best performance
in terms of penalty (M = 2.69, SD = 1.63), somewhat lower
performance with automated assistance only (M = 2.71, SD
= 1.61), poorer performance with human assistance only (M =
3.21, SD = 2.18), and worst performance without any assistance
(M = 3.55, SD = 1.95). Post hoc Tukey’s honest significant
difference tests showed that engineer performance during no-
assistance operations differed significantly ( p < .001) from each
of the other three settings. The difference between all versus
automated assistance was not statistically significant ( p = .76).

While, on average, all assistance led to better performance
under the high-workload condition, the simulation results show
that the presence of automation with or without the conductor

Fig. 6. Mean penalty values with comparison intervals (α = .001) for high
workload experienced by engineer in heavy-traffic condition with each level
of assistance. “None” level of assistance was significantly different from every
other level.

Fig. 7. Mean penalty values with comparison intervals (α = .001) for low
workload experienced by engineer in typical conditions with each level of
assistance. “None” level of assistance was significantly different from every
other level.

made much more of a difference ( p < .0001) than with the
conductor alone ( p = .0003).

However, under typical low-workload conditions, any form
of assistance led to significantly higher penalty values as shown
in Fig. 7. A one-way analysis of variance was used to determine
whether penalty values differed when the locomotive engineer
was alone, supported by all assistance, supported by automation
only, or supported by human only. Assumptions of normality
and homogeneity of error variance were met.

The analysis showed significant differences among the groups
of data. F(3,3996) = 75.77, p < .001. A lone engineer exhibited
the best performance based on the penalty score (M = 10.25, SD
= 1.48), somewhat lower performance with human assistance
(M = 10.96, SD = 1.48), poorer performance with automation
(M = 11.06, SD = 1.41), and worst performance when assisted
with both human and automation (M = 11.09, SD = 1.41).
Post hoc Tukey’s honest significant difference tests showed that
engineer performance during no-assistance operations differed
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significantly ( p < .001) from each of the other three config-
urations, but the differences between all versus automation ( p
= .69), all versus human assistance ( p = .04), and automa-
tion versus human assistance ( p = .10) were not statistically
significant. So, in simulated operations, under typical low-task
loading, engineers working alone performed better than with
any assistance, while under heavy-traffic conditions, engineers
working with automation (with or without human assistance)
had the best performance of the tested conditions.

Interestingly, the average penalty acquired under typical low-
workload conditions (M = 10.84) was significantly higher than
under high-workload conditions (M = 3.04). In referring to the
penalty function (1), this may be attributed to extended periods
of time at or below 30% utilization during the shift. It should
be emphasized that these interpretations are strictly just for this
set of operations and the model would need to be calibrated for
each specific application.

VIII. DISCUSSION AND CONCLUSION

SHOW was developed as a DES to model rail operators in
various operating conditions to investigate various staffing and
technology architectures. We gathered empirical data from the
railroad industry and validated a short-haul freight rail model
using SHOW through statistical goodness-of-fit tests, SME re-
view, and sensitivity analyses.

As with any model, there are several limitations based on the
scope of our analyses. First, SHOW only models the specific
tasks and traffic densities selected by the modeler, including the
associated distributions and parameters. Thus, any result will not
accurately reflect all freight rail scenarios. Second, the model
does not yet incorporate the possibility for human error in pro-
cessing tasks. This addition is currently in development. Third,
we did not model possible new tasks generated from coordinat-
ing with human and/or automation assistance. The simulation
needs predictive validation before decisions can be more con-
fidently drawn from the prospective analysis presented here.
Finally, the model does not account for some human factors
such as the hours of sleep prior to the shift that could impact
performance. Investigating how robust the homeostatic linear
representation of cognitive decay due to fatigue across different
rail operating conditions would be a useful contribution.

SHOW is not meant to be a fine-grained model of an indi-
vidual’s response, rather a systems-level response for planning
future system architectures. Comparing performance across al-
ternative short-haul system configurations in SHOW, we found
that the impact of automation on performance may be more
helpful than a freight conductor at moderating locomotive en-
gineer workload during heavy-traffic conditions. However, that
same automation could be detrimental to operator performance
in a typical short-haul freight rail scenario.

With companies already installing automation and making
decisions about the future workforce [43], a simulation model
like SHOW can aid in the investigation of potential implications
of human and automated assistance on the primary operator’s
workload across operating conditions. Particularly in the setting
of freight rail operations, as automation increases, we expect

boredom and the associated reductions in human performance
to also increase [27], [44]. PTC, combined with other tech-
nologies like energy management cruise control systems can
provide efficiencies that lead many railroads to believe that the
second crewmember is unnecessary [45]. The results from this
application of SHOW to a short-haul case study demonstrate
that we cannot take a blanket approach to improving safety
conditions. Further consideration is required to identify when
and how adaptive levels of automation could be implemented
to modulate workload and optimize human performance across
different phases and operational conditions.

Future research is needed to better understand the unexpected
challenges that different types of automation and human assis-
tance may bring to a primary operator’s performance. For ex-
ample, the presence of assistance may lead to new tasks that
we failed to model in this first iteration. Moreover, given in-
creasingly capable automated systems, another consideration
is shifting the engineer off-board to remotely control one or
more trains at a supervisory level. When thoughtfully designed,
human supervisory control has been shown to be beneficial to
system performance in similar operational settings with adaptive
automation [46].

Limitations were identified in our approach, but we designed
SHOW to allow any person to perform their own simulation
analysis with any railroad operations even if operators are mod-
eled to handle a specific set of tasks. The validation strategy
demonstrated that SHOW is a potentially useful tool for mod-
eling operator workload in freight rail environments that can
simulate operations to allow for study of potential future system
changes.

ACKNOWLEDGMENT

Dr. M. Clamann and B. Vincent helped in the data collection
and simulation development phases. The authors would like to
thank the subject-matter experts who shared time and wisdom
with them.

REFERENCES

[1] C. D. Martland, “Workload measurement and train crew consist adjust-
ments: The Boston & Maine experience,” Transp. J., vol. 21, no. 3, pp. 34–
57, 1982.

[2] FRA, “Summary of accident/incident counts from January-December
(2015 Preliminary),” U.S. Dept. Transportation Res., 2016. [On-
line]. Available: http://safetydata.fra.dot.gov/officeofsafety/publicsite/
summary.aspx. Accessed on: Jan. 1, 2016.

[3] Federal Railroad Administration (FRA), Department of Transportation
(DOT), “Train Crew Staffing; Proposed Rule,” Federal Register, Wash-
ington, DC, 2016.

[4] Railroad Safety Improvement Act of 2008, Pub. L. No. 110–432,
122 Stat. 4848. 2008. [Online]. Available: https://www.congress.gov/
110/plaws/publ432/PLAW-110publ432.pdf

[5] A. Brecher and M. Shurland, “Study on improving rail energy efficiency
(E2): Best practices and strategies,” in Proc. Joint Rail Conf., 2015, pp. 1–
8.

[6] D. B. Kaber and M. R. Endsley, “Out-of-the-loop performance problems
and the use of intermediate levels of automation for improved control
system functioning and safety,” Process Saf. Prog., vol. 16, no. 3, pp. 126–
131, 1997.

[7] R. Parasuraman and V. Riley, “Humans and automation: Use, misuse,
disuse, abuse,” Hum. Factors J. Hum. Factors Ergon. Soc., vol. 39, no. 2,
pp. 230–253, 1997.

http://safetydata.fra.dot.gov/officeofsafety/publicsite/summary.aspx
http://safetydata.fra.dot.gov/officeofsafety/publicsite/summary.aspx


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

NNEJI et al.: PREDICTING LOCOMOTIVE CREW PERFORMANCE IN RAIL OPERATIONS WITH HUMAN AND AUTOMATION ASSISTANCE 9

[8] M. L. Cummings and J. Ryan, “Shared authority concerns in automated
driving applications,” J. Ergon., vol. 3, pp. 1–4, 2013.

[9] A. Sebok, C. D. Wickens, and L. Laux, “Human-Automation In-
teraction: Lessons Learned from the Aviation Industry and Rec-
ommendations to the Rail Industry for Regulatory Guidance,” U.S.
Dept. Transportation Fed. Railroad Admin., Washington, DC, USA,
2015.

[10] W. T. Singleton, The Mind at Work. Cambridge, U.K.: Cambridge Univ.
Press, 1989.

[11] M. S. Young and N. A. Stanton, “Mental workload,” in Handbook of
Human Factors and Ergonomics Methods. Boca Raton, FL, USA: CRC
Press, 2005, pp. 391–399.

[12] W. W. Wierwille and F. T. Eggemeier, “Recommendations for mental
workload measurement in a test and evaluation environment,” Hum. Fac-
tors, vol. 35, no. 2, pp. 263–281, 1993.

[13] N. Subrahmaniyan, A. Liu, B. Miller, H. Groshong, and J. D. Brooks, “In-
vestigation of New Roles for Humans and Automation in Rail: An Interim
Report,” U.S. Dept. Transportation Fed. Railroad Admin., Washington,
DC, USA, 2014.

[14] E. Roth and J. Multer, “Technology Implications of a Cognitive Task Anal-
ysis for Locomotive Engineers,” U.S. Dept. Transportation Fed. Railroad
Admin., Washington, DC, USA, 2007.

[15] H. Rosenhand, E. Roth, and J. Multer, “Cognitive and Collaborative De-
mands of Freight Conductor Activities Results and Implications of a
Cognitive Task Analysis,” U.S. Dept. Transportation Fed. Railroad Ad-
min., Washington, DC, USA, 2012.

[16] E. Roth, N. Malsch, and J. Multer, “Understanding How Train Dispatchers
Manage and Control Trains: Results of a Cognitive Task Analysis,” U.S.
Dept. Transportation Fed. Railroad Admin., Washington, DC, USA, 2001.

[17] L. Huang, M. L. Cummings, and V. C. Nneji, “Preliminary analysis and
simulation of railroad dispatcher workload,” in Proc. Hum. Factors Ergon.
Soc. Annu. Meeting, Sep. 2018, vol. 62, no. 1, pp. 691–695.

[18] V. Nneji and M. Cummings, “Toward level 5: What autonomous vehicle
companies can learn from railroad and airline operations,” in Proc. Transp.
Research Board Annu. Meeting, Washington, DC, 2019.

[19] K. J. Vicente, “Cognitive work analysis,” Analysis, vol. 17, no. 3, pp. 313–
321, 1999.

[20] C. Rusnock, B. Borghetti, and I. McQuaid, “Objective-analytical mea-
sures of workload—The third pillar of workload triangulation?” Lect.
Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes
Bioinform.), vol. 9183, pp. 124–135, 2015.

[21] M. L. Cummings and C. E. Nehme, “Modeling the impact of workload in
network centric supervisory control settings,” in Proc. Neurocogn. Physiol.
Factors Dur. High-Tempo Oper., 2010, pp. 23–40.

[22] W. B. Rouse, “Models of human problem solving: Detection, diagnosis,
and compensation for system failures,” Automatica, vol. 19, no. 6, pp. 613–
625, 1983.

[23] D. K. Schmidt, “A queuing analysis of the air traffic controller’s work
load,” IEEE Trans. Syst., Man, Cybern., vol. SMC-8, no. 6, pp. 492–498,
Jun. 1978.

[24] M. L. Cummings and S. Guerlain, “Developing operator capacity estimates
for supervisory control of autonomous vehicles,” Hum. Factors, vol. 49,
no. 1, pp. 1–15, 2007.

[25] B. Donmez, C. Nehme, and M. L. Cummings, “Modeling workload impact
in multiple unmanned vehicle supervisory control,” IEEE Trans. Syst.,
Man., Cybern. A, Syst., Humans, vol. SMCA-40, no. 6, pp. 1180–1190,
Nov. 2010.

[26] R. M. Yerkes and J. D. Dodson, “The relation of strength of stimulus to
rapidity of habit-formation,” J. Comp. Neurol. Psychol., vol. 18, no. 5,
pp. 459–482, 1908.

[27] M. L. Cummings, F. Gao, and K. M. Thornburg, “Boredom in the work-
place: A new look at an old problem,” Hum. Factors, vol. 58, no. 2,
pp. 279–300, 2016.

[28] M. L. Cummings, C. Mastracchio, K. M. Thornburg, and A. Mkrtchyan,
“Boredom and distraction in multiple unmanned vehicle supervisory con-
trol,” Interact. Comput., vol. 25, no. 1, pp. 34–47, 2013.

[29] W. B. Rouse, Systems Engineering Models of Human-Machine Interac-
tion, vol. 6. Amsterdam, The Netherlands: North-Holland, 1980.

[30] Y. W. Ng, J. Chan, and S. Kamaruddin, “Analysis of shop floor perfor-
mance through discrete event simulation: A case study,” J. Ind. Eng.,
vol. 2014, pp. 1–10, 2014.

[31] V. Ahalt, N. T. Argon, S. Ziya, J. Strickler, and A. Mehrotra, “Compar-
ison of emergency department crowding scores: A discrete-event simu-
lation approach,” Health Care Manag. Sci., vol. 21, no. 1. pp. 144–155,
2018.

[32] D. K. Mitchell, “Mental workload and ARL workload modeling tools,”
Army Res. Lab., Aberdeen Proving Ground, MD, p. 35, 2000.

[33] M. H. Cha and D. Mun, “Discrete event simulation of Maglev transport
considering traffic waves,” J. Comput. Des. Eng., vol. 1, no. 4, pp. 233–
242, 2014.

[34] C. Woroniuk and M. Marinov, “Simulation modelling to analyse the cur-
rent level of utilisation of sections along a rail route,” J. Transp. Lit., vol. 7,
no. 2, pp. 235–252, 2013.

[35] A. Nash and D. Huerlimann, “Railroad simulation using OpenTrack,” in
Proc. Comput. Railw. IX, 2004, pp. 45–54.

[36] Oliver Wyman Group, “Analysis of North American Freight Rail Single-
Person Crews: Safety and Economics,” Assn. Amer. Railroads, Boston,
MA, USA, 2015.

[37] FRA, “Federal Railroad Administration Status Update on Positive Train
Control Implementation,” Washington, DC, USA, 2016. [Online]. Avail-
able: https://www.fra.dot.gov/eLib/details/L18325

[38] S. R. Hursh et al., “Fatigue models for applied research in warfighting,”
Aviat. Space. Environ. Med., vol. 75, no. 3 (Suppl.), pp. A44–A53, 2004.

[39] S. Robinson, Simulation: The Practice of Model Development and Use.
Macmillan Education UK, p. 392, 2004.

[40] A. M. Law and W. Kelton, “Simulation modeling and analysis,” ACM
Trans. Modeling Comp. Simul., vol. 2, no. 2, pp. 1370–1375, 2000.

[41] F. Leal, R. F. D. S. Costa, J. A. B. Montevechi, D. A. De Almeida, and
F. A. S. Marins, “A practical guide for operational validation of discrete
simulation models,” Pesqui. Operacional, vol. 31, no. 1, pp. 57–77, 2011.

[42] C. R. Cole, S. Simson, M. McClanachan, T. McLeod, and J. Phelan, “Train
cruise control,” in Proc. 9th Int. Heavy Haul Conf., 2009, pp. 638–645.

[43] G. Peters, “Are driverless freight trains safe?” Railway Tech-
nol., Sep. 20, 2016, Available: https://www.railway-technology.com/
features/featureare-driverless-freight-trains-safe-5008616/

[44] D. Sussman and M. Coplen, “Fatigue and alertness in the United States
railroad industry Part I: The nature of the problem,” Transp. Res. Part F
Traffic Psychol. Behav., vol. F, no. 48, pp. 1–8, 2001.

[45] B. Stephens, “CSX’s ward says one-person crews are ‘in-
evitable,’” Trains Mag., 2017. [Online]. Available: http://trn.trains.com/
news/news-wire/2017/01/18-csx-ward-one-person-crew. Accessed on:
Oct. 21, 2017.

[46] C. A. Miller and R. Parasuraman, “Designing for flexible interaction be-
tween humans and automation: Delegation interfaces for supervisory con-
trol,” Hum. Factors, vol. 49, no. 1, pp. 57–75, 2007.

Victoria Chibuogu Nneji (M’16) received the B.S.
degree in applied mathematics from Columbia Uni-
versity, New York, NY, USA, in 2014, and the Mas-
ter’s of Engineering Management degree from Duke
University, Durham, NC, USA, in 2015, where she
is currently working toward the Ph.D. degree in me-
chanical engineering with Duke Robotics.

She is a Creative Strategist and Strategic Creator
passionate about mobility. Her current research inter-
ests include trains, planes, and automobiles.

Mary (Missy) L. Cummings (SM’03) received the
Ph.D. degree in systems engineering from the Univer-
sity of Virginia, Charlottesville, VA, USA, in 2004.

She is a currently a Professor with the Duke Uni-
versity Institute of Brain Sciences, Electrical and
Computer Engineering, and Computer Science De-
partments, Durham, NC, USA, where she is the Di-
rector of Duke Robotics and the Humans and Auton-
omy Laboratory.

Alexander J. Stimpson (M’14) received the B.S. de-
gree in biological engineering from the University of
Florida, Gainesville, FL, USA, in 2007, and the S.M.
degree in aeronautics and astronautics from the Mas-
sachusetts Institute of Technology, Cambridge, MA,
USA, in 2011, where he also earned his Ph.D. degree
in 2014. He was a Postdoc at Duke University until
he joined American Haval Motor Technology, LLC
in 2017.

His dissertation focused on the application of ma-
chine learning models to inform training assessment
and intervention.

http://trn.trains.com/news/news-wire/2017/01/18-csx-ward-one-person-crew
http://trn.trains.com/news/news-wire/2017/01/18-csx-ward-one-person-crew

